Article ID: | iaor19992619 |

Country: | Netherlands |

Volume: | 81 |

Issue: | 1 |

Start Page Number: | 1 |

End Page Number: | 21 |

Publication Date: | Mar 1998 |

Journal: | Mathematical Programming |

Authors: | Todd Michael J., Ye Yinyu |

Keywords: | programming: convex |

Abstract:

In exact arithmetic, the simplex method applied to a particular linear programming problem instance with real data either shows that it is infeasible, shows that its dual is infeasible, or generates optimal solutions to both problems. Most interior-point methods, on the other hand, do not provide such clear-cut information. If the primal and dual problems have bounded nonempty sets of optimal solutions, they usually generate a sequence of primal or primal–dual iterates that approach feasibility and optimality. But if the primal or dual instance is infeasible, most methods give less precise diagnostics. There are methods with finite convergence to an exact solution even with real data. Unfortunately, bounds on the required number of iterations for such methods applied to instances with real data are very hard to calculate and often quite large. Our concern is with obtaining information from inexact solutions after a moderate number of iterations. We provide general tools (extensions of the Farkas lemma) for concluding that a problem or its dual is likely (in a certain well-defined sense) to be infeasible, and apply them to develop stopping rules for a homogeneous self-dual algorithm and for a generic infeasible-interior-point method for linear programming. These rules allow precise conclusions to be drawn about the linear programming problem and its dual: either near-optimal solutions are produced, or we obtain ‘certificates’ that all optimal solutions, or all feasible solutions to the primal or dual, must have large norm. Our rules thus allow more definitive interpretation of the output of such an algorithm than previous termination criteria. We give bounds on the number of iterations required before these rules apply. Our tools may also be useful for other iterative methods for linear programming.