Article ID: | iaor19992471 |
Country: | United States |
Volume: | 46 |
Issue: | 1 |
Start Page Number: | 73 |
End Page Number: | 83 |
Publication Date: | Jan 1998 |
Journal: | Operations Research |
Authors: | Ezawa Kazuo J. |
Keywords: | influence diagrams |
In this paper, we introduce evidence propagation operations on influence diagrams, a concept of the value of evidence to measure the impact/value of new observations/experimentation, and a concept of the value of revelation. Evidence propagation operations are critical for the computation of the value of evidence, general update and inference operations in normative expert systems that are based on the influence diagram (generalized Bayesian network) paradigm. The value of evidence allows us to compute the outcome sensitivity directly defined as the maximum difference among the values of evidence, and the value of perfect information, as the expected value of the values of evidence. We define the value of revelation as the optimal value of the values of evidence. We discuss the relationship between the value of revelation and the value of control. We also discuss implementation issues related to computation of the value of evidence and the value of perfect information.