Article ID: | iaor19991918 |
Country: | Netherlands |
Volume: | 103 |
Issue: | 2 |
Start Page Number: | 312 |
End Page Number: | 325 |
Publication Date: | Dec 1997 |
Journal: | European Journal of Operational Research |
Authors: | Montgomery D., Swinnen G., Vanhoof K. |
Recent progress in data processing technology has made the accumulation and systematic organization of large volumes of data a routine activity. As a result of these developments, there is an increasing need for data-based or data-driven methods of model development. This paper describes data-driven classification methods and shows that the automatic development and refinement of decision support models is now possible when the machine is given a large (or sometimes even a small) amount of observations that express instances of a certain task domain. The classifier obtained may be used to build a decision support system, to refine or update an existing system and to understand or improve a decision-making process. The described AI classification methods are compared with statistical classification methods for a marketing application. They can act as a basis for data-driven decision support systems that have two basic components: an automated knowledge module and an advice module or, in different terms, an automated knowledge acquisition/retrieval module and a knowledge processing module. When these modules are integrated or linked, a decision support system can be created which enables an organization to make better-quality decisions, with reduced variance, probably using fewer people.