Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models

Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models

0.00 Avg rating0 Votes
Article ID: iaor1999713
Country: Netherlands
Volume: 13
Issue: 4
Start Page Number: 439
End Page Number: 461
Publication Date: Oct 1997
Journal: International Journal of Forecasting
Authors: ,
Keywords: forecasting: applications
Abstract:

Nine macroeconomic variables are forecast in a real-time scenario using a variety of flexible specification, fixed specification, linear, and nonlinear econometric models. All models are allowed to evolve through time, and our analysis focuses on model selection and performance. In the context of real-time forecasts, flexible specification models (including linear autoregressive models with exogenous variables and nonlinear artificial neural networks) appear to offer a useful and viable alternative to less flexible fixed specification linear models for a subset of the economic variables which we examine, particularly at forecast horizons greater than 1-step ahead. We speculate that one reason for this result is that the economy is evolving (rather slowly) over time. This feature cannot easily be captured by fixed specification linear models, however, and manifests itself in the form of evolving coefficient estimates. We also provide additional evidence supporting the claim that models which ‘win’ based on one model selection criterion (say a squared error measure) do not necessarily win when an alternative selection criterion is used (say a confusion rate measure), thus highlighting the importance of the particular cost function which is used by forecasters and ‘end-users’ to evaluate their models. A wide variety of different model selection criteria and statistical tests are used to illustrate our findings.

Reviews

Required fields are marked *. Your email address will not be published.