A Gaussian upper bound for Gaussian multi-stage stochastic linear programs

A Gaussian upper bound for Gaussian multi-stage stochastic linear programs

0.00 Avg rating0 Votes
Article ID: iaor19981472
Country: Netherlands
Volume: 77
Issue: 1
Start Page Number: 1
End Page Number: 21
Publication Date: Apr 1997
Journal: Mathematical Programming
Authors: ,
Abstract:

This paper deals with two-stage and multi-stage stochastic programs in which the right-hand sides of the constraints are Gaussian random variables. Such problems are of interest since the use of Gaussian estimators of random variables is widespread. We introduce algorithms to find upper bounds on the optimal value of two-stage and multi-stage stochastic (minimization) programs with Gaussian right-hand sides. The upper bounds are obtained by solving deterministic mathematical programming problems with dimensions that do not depend on the sample space size. The algorithm for the two-stage problem involves the solution of a deterministic linear program and a simple semidefinite program. The algorithm for the multi-stage problem involves the solution of a quadratically constrained convex programming problem.

Reviews

Required fields are marked *. Your email address will not be published.