Solution of and bounding in a linearly constrained optimization problem with convex, polyhedral objective function

Solution of and bounding in a linearly constrained optimization problem with convex, polyhedral objective function

0.00 Avg rating0 Votes
Article ID: iaor19971061
Country: Netherlands
Volume: 70
Issue: 1
Start Page Number: 1
End Page Number: 16
Publication Date: Oct 1995
Journal: Mathematical Programming (Series A)
Authors: ,
Keywords: programming: probabilistic
Abstract:

A dual method is presented to solve a linearly constrained optimization problem with convex, polyhedral objective function, along with a fast bounding technique, for the optimum value. The method can be used to solve problems, obtained from LPs, where some of the constraints are not required to be exactly satisfied but are penalized by piecewise linear functions, which are added to the objective function of the original problem. The method generalizes an earlier solution technique developed by Prékopa. Applications to stochastic programming are also presented.

Reviews

Required fields are marked *. Your email address will not be published.