A class of discrete-time M/G/1 queues, including both round robin and last come first served service, in which customers are subject to permutations is considered. These time slotted queues, analogous to the symmetric queues of Kelly, are analyzed by examination of the time reversed process. Product form stationary distributions are found for a type of doubly stochastic server of Schassberger and for a Bernoulli arrival process queue model of Henderson and Taylor.